
Pallene: A statically typed companion language for Lua
Hugo Musso Gualandi

PUC-Rio
hgualandi@inf.puc-rio.br

Roberto Ierusalimschy
PUC-Rio

roberto@inf.puc-rio.br

ABSTRACT
The simplicity and flexibility of dynamic languages make
them popular for prototyping and scripting, but the lack of
compile-time type information makes it very challenging to
generate efficient executable code.

Inspired by ideas from scripting, just-in-time compilers,
and optional type systems, we are developing Pallene, a
statically typed companion language to the Lua scripting
language. Pallene is designed to be amenable to standard
ahead-of-time compilation techniques, to interoperate seam-
lessly with Lua (even sharing its runtime), and to be familiar
to Lua programmers.

In this paper, we compare the performance of the Pallene
compiler against LuaJIT, a just in time compiler for Lua, and
with C extension modules. The results suggest that Pallene
can achieve similar levels of performance.

CCS CONCEPTS
• Software and its engineering → Scripting languages;
Just-in-time compilers; Dynamic compilers; Imperative lan-
guages;
ACM Reference Format:
Hugo Musso Gualandi and Roberto Ierusalimschy. 2018. Pallene:
A statically typed companion language for Lua. In XXII Brazilian
Symposium on Programming Languages (SBLP 2018), September
20–21, 2018, SAO CARLOS, Brazil. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3264637.3264640

1 INTRODUCTION
The simplicity and flexibility of dynamic languages make
them popular for prototyping and scripting, but the lack of
compile-time type information makes it very challenging to
generate efficient executable code. There are at least three
approaches to improve the performance of dynamically typed
languages: scripting, just-in-time compilation, and optional
type systems.

The scripting approach [19] advocates the use of two sepa-
rate languages to write a program: a low-level system language
for the parts of the program that need good performance and

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SBLP 2018, September 20–21, 2018, SAO CARLOS, Brazil
© 2018 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-6480-5/18/09. . . $15.00
https://doi.org/10.1145/3264637.3264640

that interact with the underlying operating system, and a
high-level scripting language for the parts that need flexibility
and ease of use. Its main advantage is that the programmer
can choose the programming language most suited for each
particular task. The main disadvantages are due to the large
differences between the languages. That makes it hard to
rewrite a piece of code from one language to the other and
also adds run-time overhead in the API between the two
language runtimes.

Just-in-time compilers [6] dynamically translate high level
code into low-level machine code during the program execu-
tion, on demand. To maximize performance, JIT compilers
may collect run-time information, such as function parameter
types, and use that information to generate efficient special-
ized code. The most appealing aspect of JIT compilers for
dynamic languages is that they can provide a large speedup
without the need to rewrite the code in a different language.
In practice, however, this speedup is not always guaranteed
as programmers often need to rewrite their code anyway,
using idioms and “incantations” that are more amenable to
optimization [10].

As the name suggests, optional type systems allow pro-
grammers to partially add types to programs.1 These systems
combine the static typing and dynamic typing disciplines in
a single language. From static types they seek better compile-
time error checking, machine-checked lightweight documen-
tation, and run-time performance; from dynamic typing they
seek flexibility and ease of use. One of the selling points of
optional type systems is that they promise a smooth transi-
tion from small dynamically typed scripts to larger statically
typed applications [27]. The main challenge these systems
face is that it is hard to design a type system that is at the
same time simple, correct, and amenable to optimizations.

Both scripting and optional types assume that program-
mers need to restrict the dynamism of their code when they
seek better performance. Although in theory JIT compilers
do not require this, in practice programmers also need to
restrict themselves to achieve maximum performance. Realiz-
ing how these self-imposed restrictions result in the creation
of vaguely defined language subsets, and how restricting dy-
namism seems unavoidable, we asked ourselves: what if we
accepted the restrictions and defined a new programming
language based on them? By focusing on this “well behaved”
subset and making it explicit, instead of trying to optimize
or type a dynamic language in its full generality, we would be
able to drastically simplify the type system and the compiler.

To study this question, we are developing the Pallene pro-
gramming language, a statically typed companion to Lua.

1Gualandi [9] presents a historical review of type systems for dynamic
languages.

https://doi.org/10.1145/3264637.3264640
https://doi.org/10.1145/3264637.3264640

SBLP 2018, September 20–21, 2018, SAO CARLOS, Brazil Hugo Musso Gualandi and Roberto Ierusalimschy

Pallene is intended to act as a system language counterpart to
Lua’s scripting, but with better interoperability than existing
static languages. To avoid the complexity of a JIT compila-
tion, Pallene should be amenable to standard ahead-of-time
compiler optimization techniques. To minimize the run-time
mismatch, Pallene should use Lua’s data representation and
garbage collector. To minimize the conceptual mismatch, Pal-
lene should be familiar to Lua programmers, syntactically
and semantically.

In the next section of this paper, we overview the main
approaches currently used to tackle the performance problems
of dynamic languages. In Section 3, we describe how we
designed Pallene, aiming to combine desirable properties
from those approaches. In Section 4, we discuss how our
goals for Pallene affected its implementation. In Section 5, we
evaluate the performance of our prototype implementation of
Pallene on a set of micro benchmarks, comparing it with the
reference Lua implementation and with LuaJIT [20], a state
of the art JIT compiler for Lua. This evaluation suggests
that it is possible to produce efficient executable code for
Pallene programs. In the last two sections of this paper we
compare Pallene with related research in type systems and
optimization for dynamic languages, and we discuss avenues
for future work.

2 OPTIMIZING SCRIPTING
LANGUAGES

In this section we discuss the existing approaches to optimiz-
ing dynamic languages that we mentioned in the introduction.

2.1 Scripting
One way to overcome the slowness of dynamic languages
is to avoid them for performance-sensitive code. Dynamic
scripting languages are often well-suited for a multi-language
architecture, where a statically typed low-level system lan-
guage is combined with a flexible dynamically typed scripting
language, a style of programming that has been championed
by John Ousterhout [19].

Lua has been designed from the start with scripting in
mind [13] and many applications that use Lua follow this
approach. For instance, a computer game like Grim Fan-
dango has a basic engine, written in C++, that performs
physical simulations, graphics rendering, and other machine
intensive tasks. The game designers, who are not professional
programmers, wrote all the game logic in Lua [18].

The main advantages of this scripting architecture are its
pragmatism and its predictability. Each language is used
where it is more adequate and the software architect can
be relatively confident that the parts written in the system
language will have good performance. The main downside is
the conceptual mismatch between the languages.

Rewriting modules from one language to the other is dif-
ficult. A common piece of advice when a Lua programmer
seeks better performance is to “rewrite it in C”, but this is
easier said than done. In practice, programmers only follow

this advice when the code is mainly about low-level opera-
tions that are easy to express in C, such as doing arithmetic
and calling external libraries. Another obstacle to this sug-
gestion is that it is hard to estimate in advance both the
costs of rewriting the code and the performance benefits to
be achieved by the change. Often, the gain in performance is
not what one would expect: As we will see in Section 5, the
overhead of converting data from one runtime to the other
can cancel out the inherent gains of switching to a static
language.

2.2 JIT Compilers
Just-in-time (JIT) compilers are the state of the art in dy-
namic language optimization. A JIT compiler initially ex-
ecutes the program without any optimization, observes its
behavior at runtime, and then, based on this, generates highly
specialized and optimized executable code. For example, if it
observes that some code is always operating on values of type
double, the compiler will optimistically compile a version of
this code that is specialized for that type. It will also insert
tests (guards) in the beginning of the code that jump back
to a less optimized generic version in case some value is not
of type double as expected.

JIT compilers are broadly classified as either method-based
or trace-based [7], according to their main unit of compilation.
In method-based JITs, the unit of compilation is one function
or subroutine. In trace-based JITs, the unit of compilation is
a linear trace of the program execution, which may cross over
function boundaries. Trace compilation allows for a more
embedable implementation and is better at compiling across
abstraction boundaries. However, it has trouble optimizing
programs which contain unpredictable branch statements. For
this reason, most JIT compilers now tend to use the method-
based approach, with the notable exceptions of LuaJIT [20]
and the RPython Framework [5].

JIT compilers detect types at run-time because inferring
types at compile type is very hard and usually produces less
specific results. Additionally, in many dynamic languages
data types are created at run-time and there are no data
definition declarations or type annotations for the compiler
to take advantage from. As an example, the PyPy authors
explicitly mentioned this as one of their main motivations
for using JIT technology [23].

Implementing a JIT compiler can be challenging. The most
performant JITs depend heavily on non-portable low-level
code and are architected around language-specific heuristics.
High level JIT development frameworks are still an active
research area. There are various promising approaches, such
as the metatracing of the RPython framework [5] and the
partial evaluation strategy of Truffle [29], but so far these
have not been able to compete in terms of performance and
resource usage with hand-written JITs such as LuaJIT [20],
V8 [26] and HHVM [1].

From the point of view of the software developer, the most
attractive feature of JIT compilers is that they promise in-
creased performance without needing to modify the original

Pallene: A statically typed companion language for Lua SBLP 2018, September 20–21, 2018, SAO CARLOS, Brazil

-- Bad
local function mytan(x)

return math.sin(x) / math.cos(x)
end

-- Good
local sin , cos = math.sin , math.cos
local function mytan(x)

return sin(x) / cos(x)
end

Figure 1: LuaJIT encourages programmers to cache
imported Lua functions in local variables.

-- Good (!)
local function hello()

C.printf("Hello , world!")
end

-- Bad (!)
local printf = C.printf
local function hello()

printf("Hello , world!")
end

Figure 2: Surprisingly, LuaJIT encourages program-
mers not to cache C functions called through the
foreign function interface.

dynamically typed program. However, these gains are not al-
ways easy to achieve, because the effectiveness of JIT compiler
optimizations can be hard to predict. Certain code patterns,
known as optimization killers, may cause the whole section
they are in to be de-optimized, resulting in a dramatic per-
formance impact. Programmers who seek performance must
carefully avoid the optimization killers for the JIT engines
they are targeting, by following advice from the official docu-
mentation or from folk knowledge [2, 22].

Since there may be an order of magnitude difference in
performance between JIT-optimized and unoptimized code,
programmers have an incentive to write their programs in
a style that is more amenable to optimization. This leads
to idioms that are not always intuitive. For example, the
LuaJIT documentation recommends caching Lua functions
from other modules in a local variable before calling them [21],
as is shown in Figure 1. However, for C functions accessed
via the foreign function interface the rule is the other way
around: functions from the C namespace should not be cached
in local variables, as shown in Figure 2.

Another example from LuaJIT is the function in Figure 3,
which runs into several LuaJIT optimization killers (which the
LuaJIT documentation calls “Not Yet Implemented” features).
As of LuaJIT 2.1, traces that call string pattern-matching
methods such as gsub are not compiled into machine code by

function increment_numbers(text)
return (text:gsub("[0 -9]+", function(s)

return tostring(tonumber(s) + 1)
end))

end

Figure 3: This function cannot be optimized by
LuaJIT because it calls the gsub method and because
it uses an anonymous callback function.

the JIT. The same is true for traces that create closures or
define anonymous functions, even if the anonymous function
does not close over any outer variables.

The different coding style that JITs encourage is not the
only way they affect the software development process. Pro-
grammers also monitor the performance of their programs to
verify whether the JIT compiler is actually optimizing their
code. When it is not, they resort to specialized debugging
tools to discover which optimization killer is the culprit [11].
This may require reasoning at a low level of abstraction,
involving the intermediate representation of the JIT compiler
or its generated machine code [12].

Another aspect of JIT compilers is that before they can
start optimizing they must run the program for many iter-
ations, collecting run-time information. During this initial
warmup period the JIT will run only as fast or even slower
than a non-JIT implementation. In some JIT compilers the
warmup time can also be erratic, or even cyclic, as observed
by Barrett et al [3].

2.3 Optional Types
Static types serve several purposes. They are useful for error
detection, as a lightweight documentation, and they facilitate
efficient code generation. Therefore there are many projects
aiming to combine the benefits of static and dynamic typing
in a single language.

A recurring idea to help the compiler produce more effi-
cient code is to allow the programmer to add optional type
annotations to the program. Compared with a more tradi-
tional scripting approach, optional typing promises a single
language instead of two different ones, which makes it easier
for the static and dynamic parts of the program to interact
with each other. The pros and cons of these optional type
system approaches vary from case to case, since each type
system is designed for a different purpose. For example, the
optional type annotations of Common LISP allow the com-
piler to generate extremely efficient code, but without any
safeguards [8].

A research area deserving special attention is Gradual Typ-
ing [24], which aims to provide a solid theoretical framework
for designing type systems that integrate static and dynamic
typing in a single language. However, gradual type systems
still face difficulties when it comes to run-time performance.
On the one hand, systems that check types as they cross the
boundary between the static and dynamic parts of the code

SBLP 2018, September 20–21, 2018, SAO CARLOS, Brazil Hugo Musso Gualandi and Roberto Ierusalimschy

are often plagued with a high verification overhead cost [25].
On the other hand, type systems that do not perform this
verification give up on being able to optimize the static parts
of the program.

One problem with optional types is that, to embrace the
ideal of smooth transition between the typed and untyped
worlds, the static type system should support common idioms
from the dynamic language. This requirement for flexibility
usually leads to a more complex type system, making it more
difficult to use and, more importantly to us, to optimize. For
example, in Typed Lua [16] all arrays of integers are actually
arrays of nullable integers. In Lua, out of bound accesses
result in nil; moreover, to remove an element from a list one
has to assign nil to its position. Both cases require the type
system to accept nil as a valid element of the list.

3 THE PALLENE PROGRAMMING
LANGUAGE

Although JIT compilers and optional type systems are said to
be designed to cover all aspects of their dynamic languages,
this is not the case in practice. Normally there is a “well
behaved” subset of the language that is more suitable to the
optimizer or the type system, and programmers will restrict
themselves to this subset to better take advantage of their
tools.

For example, programmers targeting LuaJIT will tend to
restrict themselves to the subset of Lua that LuaJIT can
optimize. Similarly, those using TypeScript (an optional type
system for Javascript) will prefer to write programs that can
fit inside TypeScript’s type system. From a certain point of
view, we could say that these programmers are no longer
programming in Lua or Javascript, at least as these languages
are normally used.

As we already mentioned in the introduction, the real-
ization that programmers naturally restrict themselves to a
subset of the language in the search for better performance
led us to think about a new language that makes these restric-
tions explicit. Our hypothesis is that programmers would be
willing to accept these restrictions in exchange for guarantees
from the compiler that it will be able to generate good code.

Pallene is intended to be that language. As we described
before, our plan for Pallene is that it should be amenable to
standard ahead-of-time compiler optimization techniques and
be compatible with Lua, not only in terms of the run time
and data structures, but also in terms of language semantics
and familiarity. In the following paragraphs we describe how
these goals affected the design of Pallene.

Pallene should be amenable to standard ahead-of-time com-
piler optimization techniques. This goal led us not only to
make Pallene statically typed, but also statically typed with
a simple and conventional type system. The compile-time
guarantees afforded by such type system can make it much
easier for a compiler to produce efficient code. Naturally,
we should expect that this same type-system rigidity that
aids the compiler will also restrict the programming idioms
available in Pallene, which is why Pallene is designed from

function sum(xs: {float }): float
local s: float = 0.0
for i = 1, #xs do

s = s + xs[i]
end
return s

end

Figure 4: A Pallene function for summing numbers
in a Lua array.

the start to be used in conjunction with Lua, following a
traditional scripting architecture. Since Lua is available when
more flexibility is desired, our intention is that Pallene’s type
system will only support idioms that can be compiled to
efficient code. This includes primitive types like floats and
integers, arrays, and records. It excludes dynamic language
features such as ad-hoc polymorphism. This design should
allow programmers to trust that their Pallene programs will
have good performance, which is not the case for compilers
that rely on speculative optimizations, as is the case with
JIT compilers.

Pallene should share the Lua runtime. To allow for seam-
less interoperability with Lua, Pallene can directly manipulate
Lua data structures and also shares Lua’s garbage collector.
This should reduce the run-time overhead of communicat-
ing with Lua. Other languages must use the Lua–C API to
manipulate Lua values and can only reference these values
indirectly, through the API’s stack and registry [14].

C code, when manipulating Lua values, does not keep
direct pointers to Lua objects. Instead, Lua exposes them to
C through a stack, known as the Lua stack, and C functions
refer to Lua objects by integer indexes into the stack. This
scheme facilitates accurate garbage collection (live objects
are rooted in the stack) and dynamic typing (stack slots
can contain Lua values of any type) but introduces some
overhead.

Pallene should be familiar to Lua programmers, syntacti-
cally and semantically. To make it easier to combine Lua and
Pallene in a single system, Pallene is very close to a typed
subset of Lua, inspired by optional and gradual typing. For
example, Figure 4 shows a Pallene function that computes
the sum of an array of floating-point numbers. Other than
the type annotations, it is valid Lua code. Semantically, it
also behaves exactly like the Lua version, except that this
Pallene function will raise a run-time error if Lua calls it
with an argument of the wrong type (for example, an array
of integers).

This follows the idea behind the Gradual Guarantee [24]
of gradual type systems, which states that adding type anno-
tations to a program should not change its behavior except
for perhaps introducing run-time type errors. This guarantee
means that programmers can rely on their knowledge about
Lua when programming in Pallene.

Pallene: A statically typed companion language for Lua SBLP 2018, September 20–21, 2018, SAO CARLOS, Brazil

-- Pallene Code:
function add(x: float , y:float): float

return x + y
end

-- Lua Code:
local big = 18014398509481984
print(add(big , 1) == big)

Figure 5: An example illustrating why Pallene avoids
automatic type coercions.

Syntactically speaking, Pallene is almost the same as Lua:
all of Lua’s control-flow statements are present and work the
same in Pallene. Whenever reasonable, we try to ensure that
the semantics of Pallene are the same as Lua’s, following the
Gradual Guarantee. For instance, Pallene does not perform
automatic coercions between numeric types, unlike most
statically typed languages. Consider the example in Figure 5.
In Lua, as in many dynamic languages, the addition of two
integers produces an integer while the addition of two floating-
point numbers produces another floating point number. If
we remove the type annotations from the Pallene function
add, and treat it as Lua code, Lua will perform an integer
addition and the program will print false. On the other hand,
if Pallene automatically coerced the integer arguments to
match the floating-point type annotations, it would perform
a floating-point addition and the program would print true:
double-precision floating-point numbers cannot accurately
represent 254 +1. To avoid this inconsistency, Pallene instead
raises a run-time type error, complaining that an integer was
passed where a floating-point value was expected.

Pallene’s standard library is similar to Lua’s but not ex-
actly the same. The most noticeable difference is that some
functions are missing, such as those that would require poly-
morphic types. Other functions are more restricted: for in-
stance, string pattern-matching functions only accept lit-
eral (constant) patterns. Furthermore, the Pallene library is
immutable and does not support monkey patching, unlike
regular Lua libraries. If some Pallene code calls math.sin,
the compiler knows that the function has not been redefined
and generates code that directly calls the sine function from
the C standard library. It is worth noticing that program-
mers concerned with performance most likely already avoid
monkey patching.

Summing up, the main difference between Pallene and Lua
is that Pallene is statically typed with a simple type system.
This mere change restricts several common Lua programming
practices, such as functions that return a different number of
results depending on their arguments, ad-hoc polymorphism,
and heterogeneous collections. On the other hand, this makes
Pallene an ordinary imperative language, amenable to stan-
dard compiler optimization techniques. The precise details
of the type system are not yet fully defined, as Pallene is

still evolving. Nevertheless, they would not affect the results
presented here.

4 IMPLEMENTING PALLENE
Pallene’s compiler is quite conventional. It traverses the syn-
tax tree and emits C code, which is then passed to a C
compiler (such as gcc) to produce the final executable. This
binary complies with Lua’s Application Binary Interface
(ABI) so that it can be dynamically loaded by Lua just like
other modules written in C.

Leveraging an existing high quality compiler backend keeps
the Pallene compiler simple and makes Pallene portable
to many architectures. Using C also allows us to reference
datatypes and macros defined in Lua’s C header files.

The main peculiarity of Pallene compilation is that the
code it generates for accessing data-structure fields directly
manipulates the Lua data structures, which is not allowed for
regular C code. This allows better performance than what is
currently possible with C Lua modules as we will show. This
style of programming would be dangerous if exposed to C
programmers, but in Pallene the compiler is able to guarantee
that the invariants of the Lua interpreter are respected.

Because of static typing, Pallene can optimize this code
much more than the interpreter. As a striking example, when
we write xs[i] in Pallene (as happens in Figure 4), the
compiler knows that xs is an array and i is an integer, and
generates code accordingly. The equivalent array access in
Lua (or in C code using the C–API) would need to account
for the possibility that xs or i could have different types or
even that xs might actually be an array-like object with an
__index metamethod.

From the point of view of garbage collection, Pallene’s
direct-manipulation approach is closer to the APIs of Python
and Ruby, which expose pointers to objects from the scripting
language. However, since Pallene is a high level programming
language, it can come with an accurate garbage collector.
In Python the programmer is tasked with manually keeping
track of reference counts and in Ruby the garbage collector
is conservative regarding local variables in the C stack.

One of the few points where the resulting C code is not
a direct translation of the corresponding Pallene code re-
gards garbage collection. Pallene currently uses lazy pointer
stacks [15] to interact with the garbage collector. Collectable
Lua values in Pallene are represented as regular C pointers,
which at runtime will be stored in machine registers and
the C stack, with low overhead. At locations in the program
where the garbage collector is invoked, Pallene saves all the
necessary Lua pointers in the Lua stack, so that the garbage
collector can see them.

Another situation where Pallene does not directly match a
conventional static language is run-time type checking. Pal-
lene must insert run-time type checks in the frontier between
its statically typed code and Lua’s dynamically typed code, in
order to guarantee type safety. Currently, this means function
calls (when a Lua function calls a Pallene one, or when a Lua
function returns to Pallene) and data-structure reads (Lua

SBLP 2018, September 20–21, 2018, SAO CARLOS, Brazil Hugo Musso Gualandi and Roberto Ierusalimschy

might have written values of the wrong type to the field).
Note that these type checks can only raise errors and do not
affect the semantics and the code in any other way.

We avoided using wrappers to implement our type tests
because obtaining good performance in a system with wrap-
pers is challenging. In the worst case they can slow down a
program by a factor of more than ten, as shown by Takikawa
et al [25] and avoiding this overhead is still an open problem.
Another problem with wrappers is that they interact poorly
with reference equality (object identity). Instead of wrappers,
we use a more lazy system of type checks, similar to the tag
checks that JITs insert to guard their specialized code or to
the transient semantics for Reticulated Python [28].

5 PERFORMANCE EVALUATION
We want to verify whether Pallene is competitive with JIT
compilers and we want to verify whether bypassing the Lua–
C API can lead to relevant performance gains. We are not
looking to prove that Pallene can beat JITs—we are primarily
concerned with whether Pallene is a viable alternative to JIT
compilation for the optimization of Lua programs.

We prepared a small suite of benchmarks to evaluate the
performance of Pallene. The first benchmark is a prime sieve
algorithm. The second is a matrix multiplication (using Lua
arrays). The third one solves the N-queens problem. The
fourth one is a microbenchmark that simulates a binary
search. The fifth one is a cellular automaton simulation for
Conway’s Game of Life.

All the benchmarks were prepared specifically for this
study. For the algorithms with at least quadratic running
time we ran a single iteration with a suitably large N. For the
prime sieve and binary search, we repeated the computation
inside a loop to obtain a measurable time. As expected, all
benchmarks run the same in Pallene and Lua: the source code
is identical, except for type annotations, and they produce
the same results. Most of the code is also what one would
naturally write in Lua. One exception was in the code for the
N-queens benchmark, where we used if-then-else statements
in places where in Lua it would be more idiomatic to use the
idiom x and y or z as a ternary operator. (Currently Pal-
lene only supports using and and or with boolean operands.)
For the matrix multiplication and the cellular automaton
benchmarks, we manually hoisted some loop-invariant array
operations. LuaJIT already implements this optimization,
but Pallene does not yet. By optimizing it manually, we could
obtain a more accurate comparison of the costs of array reads
and writes.

We cannot rely on the C compiler for all optimizations,
such as the loop-invariant code motion we just mentioned.
Pallene array operations may call Lua runtime functions (e.g.
to grow the array) and these function calls inhibit several
optimizations at the C level. Unlike the C compiler, the
Pallene compiler is aware of Pallene’s semantics in general
and array operations in particular; therefore it is better suited
to perform these optimizations.

We also implemented all these benchmarks in C, but us-
ing Lua data structures manipulated through the Lua–C
API. This allowed us to compare how the standard scripting
approach with C compares to Pallene, which bypasses the
API.

We ran our experiments in a 3.10 GHz Intel Core i5-4440
with 8 GB of RAM and normalized the execution times to
the ones of the reference Lua interpreter (PUC-Lua). We
used Lua version 5.4-work1 for the benchmarks.2

We compared Pallene programs with their Lua equivalents,
ran under both the reference Lua implementation and under
LuaJIT. In all benchmarks the only difference between the
Lua and Pallene programs is the presence of type annotations,
since we restricted the Lua programs to the language subset
supported by Pallene. The results are shown as a table in
Figure 6 and normalized by the Lua running time in Figure 7.

The first benchmarks—prime sieve and matrix multiplication—
heavily feature array operations and arithmetic. In both, Pal-
lene and LuaJIT achieved similar performance, with an order
of magnitude improvement when compared to the reference
Lua implementation. The Lua–C API implementation had
much smaller gains. This shows the costs of using the Lua–C
API at this level of granularity (single access to array ele-
ments). The small gain is probably due to arithmetic being
performed in C instead of in dynamically-typed Lua.

The third benchmark—the N-queens problem—also fea-
tures array operations and arithmetic, but has a larger pro-
portion of arithmetic compared to array operations. Pallene
and LuaJIT performed as well as they did in the previous
two benchmarks. The C-API did better, due to the heavier
weight of arithmetic operations.

In the fourth benchmark—binary search—Pallene ran more
than three times faster than LuaJIT and the Lua–C API
implementation. We can see that the performance of Pallene
was similar to the other benchmarks which indicates that
the difference is due to LuaJIT doing worse on this particu-
lar benchmark. The binary search does many unpredictable
branches, which is very bad for trace-based JIT compilers.
This illustrates the unpredictability of JIT compilation in
general and trace-based JIT compilation in particular.

The final benchmark—Conway’s game for life—spends
much time doing string operations and generates a lot of
garbage. The C-API implementation could not obtain a
speedup compared to the reference interpreter and LuaJIT
could barely beat it. We suspect that this is due to recent
improvements in the PUC-Lua garbage collector. (Lua 5.3
takes 150% longer to run than Lua 5.4 .)3 Given that this
benchmark spends so much time in the garbage collector,
Pallene’s 2x speedup seems respectable.

2The source code for the Pallene compiler and the benchmarks can
be found at https://github.com/pallene-lang/pallene/releases/tag/
sblp2018
3LuaJIT had plans to update its garbage collector but that still hasn’t
happened.

https://github.com/pallene-lang/pallene/releases/tag/sblp2018
https://github.com/pallene-lang/pallene/releases/tag/sblp2018

Pallene: A statically typed companion language for Lua SBLP 2018, September 20–21, 2018, SAO CARLOS, Brazil

Benchmark Lua Lua–C
API LuaJIT Pallene

Sieve 6.641 4.522 1.079 1.054
Matmul 2.502 2.200 0.212 0.263
N Queens 14.276 3.850 1.610 1.500
Binary Search 8.816 2.694 2.991 0.843
Game of Life 2.133 1.990 2.459 1.151

Figure 6: Exact running times for the benchmarks,
in seconds.

0.0

0.2

0.4

0.6

0.8

1.0

Sieve
Matmul

N Queens

Binary Search

Game of Life

T
im

e
 (

n
o
rm

a
liz

e
d

)

Lua
Lua–C API

LuaJIT
Pallene

Figure 7: Comparison of Pallene’s performance
against Lua, LuaJIT and the Lua–C API. Times are
normalized by the Lua result.

6 RELATED WORK
JIT compilers answer a popular demand to speed up dynamic
programs without the need to rewrite them in another lan-
guage. However, they do not evenly optimize all idioms of
the language, which in practice affects programming style,
encouraging programmers to restrict themselves to the opti-
mized subset of the language. Pallene has chosen to be more
transparent about what can be optimized, and made these
restrictions a part of the language.

Like Gradual Typing systems, Pallene recognizes that
adding static types to a dynamic language provides many
benefits, such as safety, documentation, and performance.
Pallene is also inspired by the Gradual Guarantee, which
states that the typed subset of the language should behave
exactly as the dynamic language, for improved interoperabil-
ity. Unlike many gradually typed systems, Pallene can only
statically type a restricted subset of Lua. This avoids the
complexity and performance challenges that are common in
many gradually typed systems.

Common Lisp is another language that has used optional
type annotations to provide better performance. As said by
Paul Graham in his ANSI Common Lisp Book [8], “Lisp is
really two languages: a language for writing fast programs and
a language for writing programs fast”. Pallene and Common

Lisp differ in how their sub-languages are connected. In
Common Lisp, they live together under the Lisp umbrella,
while in Pallene they are segregated, under the assumption
that modules can be written in different languages.

Cython [4] is an extension of Python with C datatypes.
It is well suited for interfacing with C libraries and for nu-
merical computation, but its type system cannot describe
Python types. Cython is unable to provide large speedups for
programs that spend most of their time operating on Python
data structures.

Terra is a low-level system language that is embedded in
and meta-programmed by Lua. Similarly to Pallene, Terra is
also focused on performance and has a syntax that is very
similar to Lua, to make the combination of languages more
pleasant to use. However, while Pallene is intended for ap-
plications that use Lua as a scripting language, Terra is a
stage-programming tool. The Terra system uses Lua to gen-
erate Terra programs aimed at high-performance numerical
computation. Once produced, these programs run indepen-
dently of Lua. Terra uses manual memory management and
features low-level C-like datatypes. There are no language
features to aid in interacting with a scripting language at
run-time.

7 CONCLUSION AND FUTURE WORK
Our initial results suggest that Pallene’s approach of provid-
ing a statically typed companion language for a dynamically
typed scripting language is a promising approach for applica-
tions and libraries that seek good performance. It apparently
will be able to compete with LuaJIT as an alternative to
speeding up Lua applications. As we expected, Pallene per-
forms better than the scripting approach. Moreover, porting
a piece of code from Lua to Pallene seems much easier than
porting it to C.

We also want to study the impact of implementing tradi-
tional compiler optimizations such as common sub-expression
elimination and loop invariant code motion. Our current im-
plementation relies on an underlying C compiler for almost
all optimizations, and our work suggests that implementing
some optimizations at the Pallene level might lead to sig-
nificant improvements. The C compiled cannot be expected
to understand the Lua-level abstractions needed to perform
these optimizations.

One question we wish to answer in the future is whether
the type system simplicity and the good performance results
we achieved in the array-based benchmarks will be preserved
as we add more language features, such as records, objects,
modules and a foreign function interface.

ACKNOWLEGEMENTS
We would like to thank Hisham Muhammad, Gabriel Ligneul,
Fábio Mascarenhas, and André Maidl for useful discussions
about the initial ideas behind Pallene. We would also like to
thank Sérgio Medeiros for assisting us with the developement
of Pallene’s scanner and parser.

SBLP 2018, September 20–21, 2018, SAO CARLOS, Brazil Hugo Musso Gualandi and Roberto Ierusalimschy

Pallene was born as a fork of the Titan [17] programming
language, with a focus on researching the performance aspects
of dynamic programming language implementation. Gabriel
Ligneul heavily contributed to current implementation of the
Pallene compiler.

REFERENCES
[1] Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni,

Andrew Paroski, Brett Simmers, Edwin Smith, and Owen Ya-
mauchi. 2014. The Hiphop Virtual Machine. In Proceedings of
the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications (OOPSLA
’14). DOI:http://dx.doi.org/10.1145/2660193.2660199

[2] Petka Antonov and others. 2013. V8 Optimization
Killers. (2013). https://github.com/petkaantonov/bluebird/wiki/
Optimization-killers Retrieved in 2017-01-08.

[3] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah
Mount, and Laurence Tratt. 2017. Virtual Machine Warmup Blows
Hot and Cold. In Proceedings of the 32nd Annual Conference on
Object-oriented Programming Systems, Languages, and Appli-
cations (OOPSLA ’17). DOI:http://dx.doi.org/10.1145/3133876

[4] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and
K. Smith. 2011. Cython: The Best of Both Worlds. Computing
in Science Engineering 13, 2 (March 2011). DOI:http://dx.doi.
org/10.1109/MCSE.2010.118

[5] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin
Rigo. 2009. Tracing the Meta-level: PyPy’s Tracing JIT Compiler.
In Proceedings of the 4th Workshop on the Implementation,
Compilation, Optimization of Object-Oriented Languages and
Programming Systems (ICOOOLPS ’09). DOI:http://dx.doi.org/
10.1145/1565824.1565827

[6] L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient Im-
plementation of the Smalltalk-80 System. In Proceedings of the
11th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL ’84). DOI:http://dx.doi.org/10.
1145/800017.800542

[7] Andreas Gal, Christian W. Probst, and Michael Franz. 2006.
HotpathVM: An Effective JIT Compiler for Resource-constrained
Devices. In Proceedings of the 2nd International Conference on
Virtual Execution Environments (VEE ’06). DOI:http://dx.doi.
org/10.1145/1134760.1134780

[8] Paul Graham. 1996. ANSI Common LISP. Apt, Alan R. http:
//www.paulgraham.com/acl.html

[9] Hugo Musso Gualandi. 2015. Typing Dynamic Languages – a
Review. M.S. thesis, Pontifícia Universidade Católica do Rio de
Janeiro (PUC-Rio).

[10] Javier Guerra. 2017. LuaJIT Hacking: Getting next() out of the
NYI list. CloudFare Blog. (Feb. 2017). https://blog.cloudflare.
com/luajit-hacking-getting-next-out-of-the-nyi-list/.

[11] Javier Guerra Giraldez. 2016. LOOM - A LuaJIT performance
visualizer. (2016). https://github.com/cloudflare/loom

[12] Javier Guerra Giraldez. 2017. The Rocky Road to MCode. Talk
at Lua Moscow conference, 2017. (2017). https://www.youtube.
com/watch?v=sz2CuDpltmM

[13] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Walde-
mar Celes. 2007. The Evolution of Lua. In Proceedings of the
Third ACM SIGPLAN Conference on History of Programming
Languages (HOPL III). DOI:http://dx.doi.org/10.1145/1238844.
1238846

[14] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Walde-
mar Celes. 2011. Passing a Language Through the Eye of a
Needle. Commun. ACM 54, 7 (July 2011). DOI:http://dx.doi.
org/10.1145/1965724.1965739

[15] Baker J., Cunei A., Kalibera T., Pizlo F., and Vitek J. 2009. Ac-
curate garbage collection in uncooperative environments revisited.
Concurrency and Computation: Practice and Experience 21, 12
(2009). DOI:http://dx.doi.org/10.1002/cpe.1391

[16] André Murbach Maidl, Fabio Mascarenhas, and Roberto Ierusal-
imschy. 2015. A Formalization of Typed Lua. In Proceedings of
the 11th Symposium on Dynamic Languages (DLS 2015). DOI:
http://dx.doi.org/10.1145/2816707.2816709

[17] André Murbach Maidl, Fábio Mascarenhas, Gabriel Ligneul,
Hisham Muhammad, and Hugo Musso Gualandi. 2018. Source
code repository for the Titan programming language. (2018).
https://github.com/titan-lang/titan

[18] Bret Mogilefsky. 1999. Lua in Grim Fandango. Grim Fandango
Network. (May 1999). https://www.grimfandango.net/features/
articles/lua-in-grim-fandango.

[19] John K. Ousterhout. 1998. Scripting: Higher-Level Programming
for the 21st Century. Computer 31, 3 (March 1998). DOI:http:
//dx.doi.org/10.1109/2.660187

[20] Mike Pall. 2005. LuaJIT, a Just-In-Time Compiler for Lua. (2005).
http://luajit.org/luajit.html

[21] Mike Pall. 2012. LUAJIT performance tips. Lua
mailing list. (nov 2012). http://wiki.luajit.org/
Numerical-Computing-Performance-Guide

[22] Mike Pall and others. 2014. Not Yet Implemented operations in
LuaJIT. LuaJIT documentation Wiki. (2014). http://wiki.luajit.
org/NYI

[23] Armin Rigo, Michael Hudson, and Samuele Pedroni.
2005. Compiling Dynamic Language Implementa-
tions. Tech. rep., Heinrich-Heine-Universität Düsseldorf.
https://bitbucket.org/pypy/extradoc/raw/tip/eu-report/D05.
1_Publish_on_translating_a_very-high-level_description.pdf

[24] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and
John Tang Boyland. 2015. Refined Criteria for Gradual Typing. In
1st Summit on Advances in Programming Languages (SNAPL
’2015). DOI:http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.274

[25] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan
Vitek, and Matthias Felleisen. 2016. Is Sound Gradual Typing
Dead?. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL ’16). DOI:http://dx.doi.org/10.1145/2837614.2837630

[26] The Chromium Project. 2008. The Chrome V8 Engine. (2008).
https://developers.google.com/v8/ Retrieved 2017-01-08.

[27] Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage
Migration: From Scripts to Programs. In Companion to the 21st
ACM SIGPLAN Symposium on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ’06). DOI:
http://dx.doi.org/10.1145/1176617.1176755

[28] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and
Jim Baker. 2014. Design and Evaluation of Gradual Typing
for Python. In Proceedings of the 10th ACM Symposium on
Dynamic Languages (DLS ’14). DOI:http://dx.doi.org/10.1145/
2661088.2661101

[29] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas
Stadler, Gilles Duboscq, Christian Humer, Gregor Richards, Doug
Simon, and Mario Wolczko. 2013. One VM to Rule Them All.
In Proceedings of the 2013 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming
& Software (Onward! 2013). DOI:http://dx.doi.org/10.1145/
2509578.2509581

http://dx.doi.org/10.1145/2660193.2660199
https://github.com/petkaantonov/bluebird/wiki/Optimization-killers
https://github.com/petkaantonov/bluebird/wiki/Optimization-killers
http://dx.doi.org/10.1145/3133876
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1145/1565824.1565827
http://dx.doi.org/10.1145/1565824.1565827
http://dx.doi.org/10.1145/800017.800542
http://dx.doi.org/10.1145/800017.800542
http://dx.doi.org/10.1145/1134760.1134780
http://dx.doi.org/10.1145/1134760.1134780
http://www.paulgraham.com/acl.html
http://www.paulgraham.com/acl.html
https://blog.cloudflare.com/luajit-hacking-getting-next-out-of-the-nyi-list/
https://blog.cloudflare.com/luajit-hacking-getting-next-out-of-the-nyi-list/
https://github.com/cloudflare/loom
https://www.youtube.com/watch?v=sz2CuDpltmM
https://www.youtube.com/watch?v=sz2CuDpltmM
http://dx.doi.org/10.1145/1238844.1238846
http://dx.doi.org/10.1145/1238844.1238846
http://dx.doi.org/10.1145/1965724.1965739
http://dx.doi.org/10.1145/1965724.1965739
http://dx.doi.org/10.1002/cpe.1391
http://dx.doi.org/10.1145/2816707.2816709
https://github.com/titan-lang/titan
https://www.grimfandango.net/features/articles/lua-in-grim-fandango
https://www.grimfandango.net/features/articles/lua-in-grim-fandango
http://dx.doi.org/10.1109/2.660187
http://dx.doi.org/10.1109/2.660187
http://luajit.org/luajit.html
http://wiki.luajit.org/Numerical-Computing-Performance-Guide
http://wiki.luajit.org/Numerical-Computing-Performance-Guide
http://wiki.luajit.org/NYI
http://wiki.luajit.org/NYI
https://bitbucket.org/pypy/extradoc/raw/tip/eu-report/D05.1_Publish_on_translating_a_very-high-level_description.pdf
https://bitbucket.org/pypy/extradoc/raw/tip/eu-report/D05.1_Publish_on_translating_a_very-high-level_description.pdf
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.274
http://dx.doi.org/10.1145/2837614.2837630
https://developers.google.com/v8/
http://dx.doi.org/10.1145/1176617.1176755
http://dx.doi.org/10.1145/2661088.2661101
http://dx.doi.org/10.1145/2661088.2661101
http://dx.doi.org/10.1145/2509578.2509581
http://dx.doi.org/10.1145/2509578.2509581

	Abstract
	1 Introduction
	2 Optimizing Scripting Languages
	2.1 Scripting
	2.2 JIT Compilers
	2.3 Optional Types

	3 The Pallene Programming Language
	4 Implementing Pallene
	5 Performance Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

