
Indentation-Sensitive Parsers for Free-Form Languages
Sérgio Queiroz de Medeiros

Escola de Ciência e Tecnologia, UFRN
Natal, Brazil

sergio.medeiros@ufrn.br

Hugo Musso Gualandi
Instituto de Computação, UFRJ

Rio de Janeiro, Brazil
hugomg@ic.ufrj.br

ABSTRACT
Consistent source code indentation is crucial for code read-
ability, even in free-form languages that are oblivious to
whitespace. However, as in a free-form language program-
mers can format the code as they desire, this may lead to
mismatched indentation styles. Automatic code formatters
address this problem by rewriting code to a standard lay-
out, however they impose a specific style and only work for
syntactically valid code.

We describe an extension of Parsing Expression Grammars
(PEGs) that can model indentation information and we show
that it can be used to specify different indentation styles. A
parser based on such extension can check for indentation
inconsistencies and inform the developer about them.
To evaluate our approach, we also implemented a full

parser for the Lua programming language and used it to
parse a well-known Lua codebase. We observed that 98%
of source code lines were well-indented according to our
specification.

KEYWORDS: Parsing, Indentation, Code Formatting, Syntatic
Error Reporting

1 Introduction
Adequate source code indentation is essential for readability
and maintainability [7], even for free-form programming
languages which ignore whitespace. However, freedom of
formatting may lead to clashing layout styles. To address this,
code formatters may be employed to automatically rewrite
the indentation of the programs. However, the programmer
might not like the style enforced by the formatter [10, 11] or
may not want to rewrite the source file entirely. Moreover,
such formatters usually cannot handle code that is partially
written or containing syntactic errors.

We argue that it is possible to develop indentation ver-
ifiers for free-form languages by employing parsing tech-
niques originally developed to parse indentation-sensitive
languages, such as Python and Haskell. Following the work
of Adams and Aǧacan [1, 2], we present an extension of
Parsing Expression Grammars (PEGs) and use it to specify
different indentation styles. The main technical novelty is
that when our PEGs parse a line with suspicious indentation,
they emit a warning instead of a syntax error.
Because we specify the indentation declaratively, as part

of the grammar, our technique is not restricted to a single
programming language and can also be adapted to match the

indentation conventions of a given project. This contrasts
with code formatters, whose ad-hoc algorithms support lim-
ited customization.
To evaluate our work, we implemented an indentation-

sensitive parser for the Lua programming language and we
used it to verify the indentation style of a well-known Lua
codebase. By adapting the grammar specification to match
the prevailing indentation style we could reach a point where
98% of source-code lines were considered to be well-indented.
The rest of this paper is organized as follows: Section 2

reviews PEGs and exemplifies the new indentation operators.
Section 3 describes the semantics of indentation-aware PEGs.
Section 4 evaluates the PEG grammars against real Lua code.
Section 5 discusses related works and Section 6 presents our
conclusions.

2 Describing Indentation Styles with PEGs
In this section we discuss different indentation styles and
show how they could be described by a PEG extended with
indentation operators.

Briefly, a standard PEG is similar to a Context-Free Gram-
mar (CFG). A PEG consists of a set of rules of the form𝐴← 𝑝 ,
where 𝐴 is a variable and 𝑝 is a parsing expression. Differ-
ently from CFGs, in PEGs there is only one rule associated
with a given variable. Moreover, in PEGs the right-hand side
of a rule is a parsing expression and there is a choice opera-
tor (/), which matches the alternatives in left-to-right order.
Section 3 presents the semantics of PEGs in detail.

The abstract syntax of parsing expressions is given below,
where 𝑎 is a terminal, 𝐴 is a variable, and 𝑝 is a parsing
expression:

𝑝 = 𝜀 | 𝑎 | 𝐴 | 𝑝1𝑝2 | 𝑝1/𝑝2 | 𝑝∗ | !𝑝 (1)

Informally, 𝜀 successfully matches without consuming
any input. The terminal 𝑎 matches and consumes itself or
fails otherwise. A variable 𝐴 tries to match the grammar
rule associated with that variable. The sequence 𝑝1𝑝2 tries
to match 𝑝1 followed by 𝑝2. The ordered choice 𝑝1/𝑝2 tries
to match 𝑝1 and if that fails then it tries to match 𝑝2. The
repetition 𝑝∗ matches 𝑝 zero or more times, as many times
as possible. The negative lookahead !𝑝 asserts that the input
does not match 𝑝 ; it succeeds without consuming input when
the input does not match 𝑝 and it fails when it does match.
To model indentation-sentitive languages, Adams and

Ağacan [2] associate an indentation level with each node of
the parse tree and they enrich the input tokens with column

https://orcid.org/0000-0002-0759-0926
https://orcid.org/0000-0003-2444-1209

SBLP’25, September 22–26, 2025, Recife, PE S. Medeiros and H. Gualandi

i f x {
/ / commands

}

(a)Opening brace (usually at the same line)
at a greater indentation level than the if
keyword and closing brace at the same
indentation level of if.

i f x
{

/ / commands
}

(b) Opening brace (usually at the
next line) and closing brace at the
same indentation level of the if key-
word.

i f x { / / commands }

(c)Opening and closing braces with
an indentation greater or equal
than the if keyword. (Here both are
also on the same line.)

Listing 1. Different layout styles for the opening and closing brace of a block.

numbers. To specify the indentation restrictions, they also
introduced two new form of parsing expressions: 𝑝⊲ and |𝑝 |.
In 𝑝⊲, the subexpression 𝑝 is superscripted by some rela-

tion ⊲, which indicates how 𝑝 should be indented regarding
its parent node in the parsing tree. For example, we can
write 𝑝> to say that a tree parsed by 𝑝 must have a greater
indentation than its parent. When not specified, the inden-
tation of a child should be the same of its parent. Although
in principle any indentation relation may be used, the most
important ones are =, >, ≥, and ⊛. The first three have their
usual meanings and ⊛ denotes the relation {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ N},
which allows any indentation level, without restriction.

The absolute alignment |𝑝 | aligns code vertically. It makes
without effect the next usages of the indentation operator 𝑝⊲
until the next token is matched. In practice, this forces the
first token of a “line” to be indented with the default =, even
if the grammar would try to indent it with > or ≥.
Let us now discuss how to use these indentation opera-

tors to specify indentation layouts in free-form languages.
Consider Listing 1, which shows different ways to indent the
opening and the closing brace of an if-statement. To allow
the indentation style of Listing 1a, we can use the following
grammar:

if_stmt← if= exp> {> block> }= (2)

This says that the if keyword must be at the same in-
dentation level as the parent if_stmt node. The condition
expression, the opening brace, and the inner block must
have a column number greater than the the parent node.
Thus, if they appear in another line, they must be indented
to the right of the if keyword. Conversely, the closing brace
must be placed at the same column as the if, necessarily in
another line.
Note that, because the model only cares about column

numbers, the opening brace is not required to be in the same
line as the if keyword. Furthermore, the expression, opening
brace, and block can each be indented at different levels.
To favor an indentation style where the opening brace

aligns vertically with the if keyword, as shown in Listing 1b,
we should use {= instead of {> in the grammar rule, as

shown below:

if_stmt← if= exp> {= block> }= (3)

To deal with a single-line statement as in Listing 1c, one
alternative is to weaken the restrictions in the grammar and
use }≥ instead of }= for the closing brace.

if_stmt← if= exp> {≥ block> }≥ (4)

Another option is to merely ignore the indentation warning
given by grammars 2 or 3. Because our parser does not reject
mis-indented programs outright, the programmer can choose
to sparingly deviate from the prescribed indentation rules.

As we mentioned before, the indentation relation does not
impose restrictions with regard to the line of a token/ter-
minal. So, considering this last specification of the 𝑖 𝑓 _𝑠𝑡𝑚𝑡

rule, Listing 2 respects all indentation restrictions.

i f x
{

p r i n t (" h e l l o ")
}

Listing 2. Because the specification is indifferent to line num-
bers, it allows some unusual indentation. Here, the opening
brace is not in the same line of the keyword if, the closing
brace is at a greater indentation level than the if and and is
not aligned with the opening brace.

Perhaps, if the grammar specification was allowed to in-
spect line numbers, it would be possible to develop a gram-
mar that does not allow the strange code from Listing 2.
However, in this paper we want to investigate how far we
can get with Adams’ technique [2], which does not care
about line numbers.
It is not difficult to parse code without emitting inden-

tation warnings. A trivial way to achieve this is by using
the ⊛ operator. An expression like }⊛ , for example, allows
a closing brace at any column. However, by doing this we
are imposing no indentation restrictions. As we discuss in
Section 4, the indentation rules of the PEG grammar will

Indentation-Sensitive Parsers for Free-Form Languages SBLP’25, September 22–26, 2025, Recife, PE

depend on the code base and the intended coding style, lead-
ing to a parser that performs many or just a few indentation
checks.

Unlike code formatter tools, which impose a very specific
layout for a program, the approach followed by our and
Adams’s work describes a class of acceptable layouts for the
program. Nevertheless, the formalism is powerful enough
to model the layout restrictions imposed by indentation-
sensitive languages such as Python and Haskell [1, 2].

For example, in Figure 1 we have a grammar that uses the
previous definition of if_stmt and adds rules block, stmt and
assign_stmt. Such grammar defines a language where the
statements of a block should be aligned at the same indenta-
tion level and such level should be greater than the one of
its surrounding if-statement.

𝑏𝑙𝑜𝑐𝑘 ← (stmt=)∗

𝑠𝑡𝑚𝑡 ← 𝑖 𝑓 _𝑠𝑡𝑚𝑡= / 𝑎𝑠𝑠𝑖𝑔𝑛_𝑠𝑡𝑚𝑡= / · · ·
𝑖 𝑓 _𝑠𝑡𝑚𝑡 ← if= exp> {≥ 𝑏𝑙𝑜𝑐𝑘> }≥

𝑎𝑠𝑠𝑖𝑔𝑛_𝑠𝑡𝑚𝑡 ← ident= => exp>

Figure 1. Example of a PEG to match a block of statements
at the same indentation level.

In rule if_stmt, the expression𝑏𝑙𝑜𝑐𝑘> indicates that a block
should be more indented, where a block consists of zero or
more statements at the same indentation level ((𝑠𝑡𝑚𝑡 =)∗).

To the previous grammar work as expected, the first lexi-
cal element of a statement must also match the indentation
level of its parent node, but this may require some effort.
For example, let us consider the following definition of ident,
where [𝑎 − 𝑧]+ means an expression that matches any low-
ercase letter one or more times:

ident← ([𝑎−𝑧]≥)+ (5)
The indentation relation ≥ in this definition of ident allows

all letters of the identifier to appear at a greater indentation
level than the statement they are contained in. Because of
this, the identifier can appear anywhere in the line and it is
possible to end up with misaligned assignment statements,
as shown in Listing 3.

i f x {
a = 42

b = 41
c = 43

}

Listing 3.Misalignment caused by ≥ in the ident rule.

It is easy to fix this issue by using the absolute align-
ment operator | |. If we absolutely align the |stmt|, we discard

the effect of relation ≥ when matching the first letter of an
identifier, anchoring it to the indentation of the assignment
statement. As a result, the parser now correctly specifies that
statements in the block should be vertically aligned.

𝑏𝑙𝑜𝑐𝑘 ← (|stmt| =)∗ (6)

Of course, we could also achieve a similar result by man-
ually changing the definition of ident to use = for the first
character. However, this manual process can be more ardu-
ous when there are many layers of recursion in the affected
grammar rules.

ident← [𝑎−𝑧]= ([𝑎−𝑧]≥)∗ (7)

3 Semantics of PEGs with Indentation
Information

In this section we present a formal semantics of PEGs with
indentation restrictions and discuss its differences in com-
parison with the previous work of Adams [1, 2].
A parsing expression grammar 𝐺 is a tuple (𝑉 ,𝑇 , 𝑃, 𝑝𝑆),

where𝑉 is a finite set of variables,𝑇 is a finite set of terminals,
𝑃 is a total function from variables to parsing expressions,
and 𝑝𝑆 is the initial parsing expression.
We describe the function 𝑃 as a set of rules of the form

𝐴← 𝑝 , where𝐴 ∈ 𝑉 and 𝑝 is a parsing expression. A parsing
expression, when applied to an input string, either consumes
a prefix of it or fails. The notation𝐺 [𝑝] 𝑥𝑦 PEG

{ 𝑦 means that
expression 𝑝 matches the input xy, consuming the prefix x,
while resolving any variables using the rules of 𝐺 . We use
𝐺 [𝑝] 𝑥𝑦 PEG

{ fail to express an unsuccessful match.
In the discussion below we assume that 𝐺 is complete,

that is, the matching of 𝑝𝑆 always finishes, either consuming
an input prefix or failing.

3.1 Extending PEGs to Check Indentation
In order to describe indentation restrictions, we extend the
previous definition of PEG grammars. First, we add the set
𝑆𝑝 ∈ 𝑇 to the tuple that defines a PEG. This defines blank
terminals (e.g., space, tab, new line, etc) which should not be
considered when checking for indentation. Second, as men-
tioned in the previous section, we add the parsing expres-
sions 𝑝⊲ and |𝑝 |, which describe, respectively, an indentation
relation and an absolute alignment.
We must also modify the parsing relation

PEG
{. First, to-

kens/terminals in the input string are annotated with their
corresponding column in the source code. For example, the
input token 𝑎𝑖 represents a 𝑎 at indentation 𝑖 . Beware that
these column superscripts are for the input string, not the
grammar, and should not be confused with indentation oper-
ators. Second, the domain of the matching relation

PEG
{ now

includes an indentation set 𝐼 ⊆ N, a warning set𝑊 , and an
absolute-alignment flag 𝑓 ∈ { ∥, ̸ ∥ }. Flag 𝑓 is ∥ to indicate

SBLP’25, September 22–26, 2025, Recife, PE S. Medeiros and H. Gualandi

that we are inside an expression |𝑝 | that did not consume a
token/terminal yet. Otherwise, its value is ̸ ∥.

Figure 2 presents the complete semantics of PEGs with the
new parsing expressions that allow to describe indentation
information. Symbol 𝑋 represents the result of a matching
that can either succeed or fail.

Rule empty.1 deals with the case of an empty parsing ex-
pression. It always succeeds and does not change the current
input, indentation set, warning set, and absolute-alignment
flag.
Rule var.1 handles the case of a variable 𝐴. It basically

forwards the result 𝑋 of matching the rule associated with
𝐴 in grammar 𝐺 .

Rules term.1, term.2 and term.3 deal with the successful
matching of a terminal 𝑎, whereas rules term.4 and term.5
handle the corresponding failure cases.
When matching a space terminal, the indentation of the

actual input is not relevant (rule term.1), and neither the
indentation set 𝐼 , nor the warning set𝑊 , not the absolute-
alignment flag change. However, when matching a terminal
𝑎 ∉ 𝑆𝑝 we will check the current indentation 𝑖 against the
indentation set 𝐼 . In case 𝑖 fits the expected indentation (rule
term.2), the matching succeeds, the currently column be-
comes the new indentation set, and the absolute-alignment
flag is disabled. Otherwise, the matching still succeeds and
the absolute-alignment flag is disabled too, but we do not up-
date the indentation set and we add an indentation warning
to the set𝑊 .

A concatenation 𝑝1 𝑝2 is handled by rules seq.1 and seq.2.
In case 𝑝1 succeeds, the result of the concatenation is given
by the matching of 𝑝2 against a suffix of input, where the
indentation set, the warning set and the absolute-alignment
flag may have be updated during the matching of 𝑝1. When
𝑝1 fails, the whole concatenation fails and set𝑊 may still be
updated (rule seq.2).

Rules rep.1 and rep.2 deal with the matching of 𝑝∗. When
the matching of 𝑝 fails (rule rep.1), the repetition succeeds
and gives the current input, indentation set and absolute-
alignment flag as result, plus a possibly updated warning
set. When 𝑝 succeeds, we keep matching 𝑝∗ against an input
suffix.
In case of a predicate !𝑝 , it succeeds when the matching

of 𝑝 fails (rule not.1), and it fails when the matching of 𝑝
succeeds (rule not.2). Notice that the warning set𝑊 stays
unchanged; any indentation warnings that occur inside 𝑝
are ignored.

In case of an ordered choice 𝑝1 / 𝑝2, if 𝑝1 succeeds this is
the matching result (rule ord.1), otherwise the result of the
choice is given by the matching of 𝑝2 (rule ord.2).
Rules ind.1, ind.2 and ind.3 handle the new expression

𝑝⊲. When the absolute-alignment flag is disabled (̸ ∥), we
perform the matching of 𝑝 considering the indentation set
𝐽 computed from 𝐼 using the relation ⊲ (rules ind.1 and
ind.2). Otherwise, the absolute-alignment flag is equal to

∥, we ignore the indentation relation when matching 𝑝 and
just use the current indentation set 𝐼 (rule ind.3).
Lastly, rule abs.1 turns on the absolute alignment flag

when we encounter |𝑝 |.

3.2 Comparison with the Semanatics Proposed by
Adams and Ağacan

Our semantics presented in Figure 2 has much in common
with the semantics presented by Adams and Ağacan [2], but
has also some important differences.
First, the work of Adams and Ağacan assumes that the

input stream provides tokens for the grammar, so the PEG
does not describe lexical elements. Although this is the usual
in case of CFGs, it is not the case for PEGs, which seldom use
a separate lexer. To allow the description of lexical elements
in PEGs, we introduced the set 𝑆𝑝 in our formalization and
used it to determine if we would check the indentation when
matching a terminal.
Another difference of our work is that failing to respect

the alignment restrictions produces a warning instead of a
failure. This was not contemplated by Adams because his
original work focused on indentation-sensitive languages,
but as we are interested in parsing free-form languages, fail-
ing a matching because of a misalignment seems too strict.
Finally, the formalisms used to describe the semantics of

PEGs are fairly different. Adams and Ağacan give a seman-
tics based on a step counter, heavily based on the original
PEG semantics presented by Ford [4]. Our work, instead,
presents a natural semantics, where the matching of a pars-
ing expression gives us a proof tree.

4 Evaluation
In this section we evaluate the usage of a PEG parser that
checks indentation to parse programs of a free-form lan-
guage. To perform such evaluation, we defined a PEG for the
Lua language and we use it to parse the code of a well-known
Lua library. Section 4.1 presents and overview of the Lua
grammar, and Section 4.2 discusses its practical usage and
a few modifications that we performed. Finally, Section 4.3
discusses the behavior of our Lua parser in case of invalid
input.

4.1 A PEG for Lua
Lua is a scripting language with a verbose (Pascal-like) syn-
tax that supports several programming styles, e.g., proce-
dural, object-oriented, functional, etc [5]. The complete syn-
tax for Lua 5.4 is available on its manual 1.

Figure 3 shows an excerpt of our Lua grammar using PEGs,
where . is an expression that matches any terminal, and 𝑝?
means an optional matching. When naming rules, we use
lowercase letters when defining syntactical elements and
uppercase ones to define lexical elements. Of particular note

1https://lua.org/manual/5.4/manual.html#9

https://lua.org/manual/5.4/manual.html#9

Indentation-Sensitive Parsers for Free-Form Languages SBLP’25, September 22–26, 2025, Recife, PE

Empty
𝐺 [𝜀] 𝑥 𝐼 𝑓 𝑊

PEG
{ (𝑥, 𝐼, 𝑓 , 𝑊)

(empty.1) Non-terminal
𝐺 [𝑃 (𝐴)] 𝑥𝑦 𝐼 𝑓 𝑊

PEG
{ 𝑋

𝐺 [𝐴] 𝑥𝑦 𝐼 𝑓 𝑊
PEG
{ 𝑋

(var.1)

Terminal
𝑎 ∈ 𝑆𝑝

𝐺 [𝑎] 𝑎𝑖𝑥 𝐼 𝑓 𝑊
PEG
{ (𝑥, 𝐼, 𝑓 , 𝑊)

(term.1)

𝑖 ∈ 𝐼 𝑎 ∉ 𝑆𝑝

𝐺 [𝑎] 𝑎𝑖𝑥 𝐼 𝑓 𝑊
PEG
{ (𝑥, {𝑖}, ̸ ∥, 𝑊)

(term.2) 𝑖 ∉ 𝐼 𝑎 ∉ 𝑆𝑝

𝐺 [𝑎] 𝑎𝑖𝑥 𝐼 𝑓 𝑊
PEG
{ (𝑥, 𝐼, ̸ ∥, 𝑊 ∪ {𝑖})

(term.3)

𝑎 ≠ 𝑏

𝐺 [𝑎] 𝑏𝑖𝑥 𝐼 𝑓 𝑊
PEG
{ (fail, 𝑊)

(term.4)
𝐺 [𝑎] 𝜀 𝐼 𝑓 𝑊

PEG
{ (fail, 𝑊)

(term.5)

Sequence
𝐺 [𝑝1] 𝑥𝑦 𝐼 𝑓 𝑊

PEG
{ (𝑦, 𝐽 , 𝑔, 𝑊 ′) 𝐺 [𝑝2] 𝑦 𝐽 𝑔 𝑊 ′

PEG
{ 𝑋

𝐺 [𝑝1 𝑝2] 𝑥𝑦 𝐼 𝑓 𝑊
PEG
{ 𝑋

(seq.1) 𝐺 [𝑝1] 𝑥 𝐼 𝑓 𝑊
PEG
{ (fail, 𝑊 ′)

𝐺 [𝑝1 𝑝2] 𝑥 𝐼 𝑓 𝑊
PEG
{ (fail, 𝑊 ′)

(seq.2)

Repetition
𝐺 [𝑝] 𝑥 𝐼 𝑓 𝑊

PEG
{ (fail, 𝑊 ′)

𝐺 [𝑝∗] 𝑥 𝐼 𝑓 𝑊
PEG
{ (𝑥, 𝐼, 𝑓 , 𝑊 ′)

(rep.1) 𝐺 [𝑝] 𝑥𝑦 𝐼 𝑓 𝑊
PEG
{ (𝑦, 𝐽 , 𝑔, 𝑊 ′) 𝐺 [𝑝∗] 𝐽 𝑔 𝑊 ′

PEG
{𝑋

𝐺 [𝑝∗] 𝑥𝑦 𝐼 𝑓 𝑊
PEG
{ 𝑋

(rep.2)

Negative Predicate
𝐺 [𝑝] 𝑥 𝐼 𝑓 𝑊

PEG
{ (fail, 𝑊)

𝐺 [!𝑝] 𝑥 𝐼 𝑓 𝑊
PEG
{ (𝑥, 𝐼, 𝑓 , 𝑊)

(not.1) 𝐺 [𝑝] 𝑥𝑦 𝐼 𝑓 𝑊
PEG
{ (𝑦, 𝐽 , 𝑔, 𝑊 ′)

𝐺 [!𝑝] 𝑥𝑦 𝐼 𝑓 𝑊
PEG
{ (fail, 𝑊)

(not.2)

Ordered Choice
𝐺 [𝑝1] 𝑥𝑦 𝐼 𝑓 𝑊

PEG
{ (𝑦, 𝐽 , 𝑔, 𝑊 ′)

𝐺 [𝑝1 / 𝑝2] 𝑥𝑦 𝐼 𝑓 𝑊
PEG
{ (𝑦, 𝐽 , 𝑔, 𝑊 ′)

(ord.1)

𝐺 [𝑝1] 𝑥𝑦 𝐼 𝑓 𝑊
PEG
{ (fail, 𝑊 ′) 𝐺 [𝑝2] 𝑥𝑦 𝐼 𝑓 𝑊 ′

PEG
{ 𝑋

𝐺 [𝑝1 / 𝑝2] 𝑥𝑦 𝐼 𝑓 𝑊
PEG
{ 𝑋

(ord.2)

Indentation
𝐺 [𝑝] 𝑥𝑦 𝐽 ̸ ∥ 𝑊 PEG

{ (𝑦, 𝐽 ′, ̸ ∥, 𝑊 ′)

𝐺 [𝑝⊲] 𝑥𝑦 𝐼 ̸ ∥ 𝑊 PEG
{ (𝑦, 𝐼 ′, ̸ ∥, 𝑊 ′)

(ind.1),where 𝐽 = { 𝑗 | 𝑗 ∈ N, ∃𝑖 ∈ 𝐼 , 𝑗 ⊲ 𝑖} and 𝐼 ′ = {𝑖 | 𝑖 ∈ 𝐼 , ∃ 𝑗 ∈ 𝐽 ′, 𝑗 ⊲ 𝑖}

𝐺 [𝑝] 𝑥𝑦 𝐽 ̸ ∥ 𝑊 PEG
{ (fail, 𝑊 ′)

𝐺 [𝑝⊲] 𝑥𝑦 𝐼 ̸ ∥ 𝑊 PEG
{ (fail, 𝑊 ′)

(ind.2),where 𝐽 = { 𝑗 | 𝑗 ∈ N, ∃𝑖 ∈ 𝐼 , 𝑗 ⊲ 𝑖} 𝐺 [𝑝] 𝑥 𝐼 ∥ 𝑊 PEG
{ 𝑋

𝐺 [𝑝⊲] 𝑥 𝐼 ∥ 𝑊 PEG
{ 𝑋

(ind.3)

Absolute Alignment
𝐺 [𝑝] 𝑥 𝐼 ∥ 𝑊 PEG

{ 𝑋

𝐺 [|𝑝 |] 𝑥 𝐼 𝑓 𝑊
PEG
{ 𝑋

(abs.1)

Figure 2. Semantics of PEGs with Indentation.

is the lexical rule SP. Following idiomatic PEG design, this
rule matches spaces and it is used inside other lexical rules
to match all spaces following a lexical element itself.

Overall, we followed the grammar specification provided
in the Lua manual. As we mentioned before, the default

indentation relation is =, so we omit it in the Lua grammar
presented in Figure 3.

In comparison with the if-statements discussed previously,
the defined one in Figure 3 has also an else-part, which should
be at the same indentation level of the if keyword.

SBLP’25, September 22–26, 2025, Recife, PE S. Medeiros and H. Gualandi

𝑐ℎ𝑢𝑛𝑘 ← SP 𝑏𝑙𝑜𝑐𝑘 !.
𝑏𝑙𝑜𝑐𝑘 ← 𝑐𝑚𝑑∗ 𝑟𝑒𝑡𝑢𝑟𝑛_𝑐𝑚𝑑?

𝑐𝑚𝑑 ← SEMICOLON≥ / 𝑣𝑎𝑟𝑙𝑖𝑠𝑡 EQ> 𝑒𝑥𝑝𝑙𝑖𝑠𝑡≥

/ GOTO IDENT> / DO block> END

/ FUNCTION 𝑓 𝑢𝑛𝑐𝑛𝑎𝑚𝑒> 𝑓 𝑢𝑛𝑐𝑏𝑜𝑑𝑦

/ IF exp≥ THEN≥ block>

(ELSEIF exp≥ THEN> block>)∗
(ELSE block>)? END≥

/ FUNCTION 𝑓 𝑢𝑛𝑐𝑛𝑎𝑚𝑒> 𝑓 𝑢𝑛𝑐𝑏𝑜𝑑𝑦

𝑓 𝑢𝑛𝑐𝑏𝑜𝑑𝑦 ← LPAR> (𝑝𝑎𝑟𝑙𝑖𝑠𝑡?)> LPAR> block> END

Figure 3. Excerpt of PEG for Lua 5.4 with Indentation Infor-
mation.

4.2 Parsing Lua libraries
To evaluate our Lua parser, we used it to parse the code of
awesome 2, a highly configurable window manager for the X
window system.

Below,we discuss some interesting cases, wherewe rewrote
parts of the grammar or relaxed indentation restrictions be-
cause of the programming style used in awesome.

In Lua, functions are first-class values and lambda expres-
sions often appear as function parameters, as seen in this
except from Awesome’s autofocus.lua:

signal("property :: selected", function (t)

delayed_call(check_focus , t)

end)

In the previous call, the body of the lambda expression is
less indented than the keyword function. In case our Lua
parser complains about this indentation style, we will get
several warnings. On the other hand, by allowing this style
we would also not check the indentation of a function body
in an ordinary definition of a non-anonymous function.

As an alternative solution, we created a new version of rule
funcbody, called funcbody_exp. While rule funcbody keeps
checking the indentation of the function body and the closing
keyword end, as shown in Figure 3, rule funcbody_exp does
not, it uses the ⊛ indentation relation.
Another indentation check that caused several warnings

when parsing files from the awesome library was the one
related to the arguments of a function, as shown below:

𝑓 𝑢𝑛𝑐_𝑎𝑟𝑔𝑠 ← LPAREN 𝑒𝑥𝑝𝑙𝑖𝑠𝑡>? RPAREN> / · · ·

In case of a function call with a long prefix or with several
arguments, it is usual to break the call in several lines in
a way that the arguments are not more indented than the

2https://github.com/awesomeWM/awesome

left parentheses that indicates the call, as in the following
excerpt from file keygrabber.lua of awesome:

self.stop_callback(

self.current_instance , other_arguments

)

In this call, neither argument self.current_instance
nor the right parentheses have the indentation expected by
the grammar. To allow such style, we changed the previous
definition of func_args to use ⊛ instead of >.

After performing similar adjustments in our Lua grammar,
where we replaced other indentation relations with ⊛, but
without adding new grammar rules, we ran again our cor-
responding PEG parser for the 468 Lua files in the awesome
library. Some of these files are related to documentation and
tests.

Overall, we could parse most Lua files (279 ≈ 59.6%) with-
out any indentationwarnings. Considering all 468 files, which
have 36420 Lines of Code (LOC), we reported 707 warnings.
Thus, our rate of indentation warning per LOC was 1.94%,
that is, around one indentation warning for every 50 lines of
code. Below, we discuss some of the indentation warnings
reported.

In some files from awesome a Lua table is initialized as fol-
lows, where the opening curly bracket is not more indented
than keyword local:

local capi =

{

field = value

}

This causes an indentation warning similar to the one be-
low, where the valid indentation range goes from 2, assuming
the indentation of local is 1, to the maximum available inte-
ger:
Warning (line 2): Suspicious indentation for '{'.
Expecting [2,2147483647], but got 1.

Another indentation warning related to the table construc-
tor is the following one, where the parser was expecting
fields down, back and enter to have an indentation greater
or equal than field up:

menu.menu_keys = { up = { "Up", "k" },

down = { "Down", "j" },

back = { "Left", "h" },

enter = { "Right", "l" } }

Overall, our parser reported only one warning related to
the indentation of the if-statement. The reason was an one
line if-statement with an elseif clause like the one below:

if x then s = 1 elseif y then s = 2 end

In such statement, kewywords if and elseif are not at
the same indentation level. As this coding style is rare in
Lua, as indicated by the few associated warnings, we did not

https://github.com/awesomeWM/awesome

Indentation-Sensitive Parsers for Free-Form Languages SBLP’25, September 22–26, 2025, Recife, PE

modify the indentation restrictions of the grammar in order
to accept it.
To avoid reporting too many indentation warnings, our

parser reports at most one indentation warning per line.
However, a single layout mistake may lead to multiple warn-
ings if many different lines are involved. The following ex-
ample comes from Awesome’s menu.lua:

child[num]:hide()

if active_child == child[num] then
active_child = nil

end
table.remove(child , num)

The first statement of the block was mistakenly indented
with an extra space, causing the alignment of the block to be
set more to the right than it should. The parser then deduces
that the following lines (except the statement inside the if)
are not indented enough and issues an indentation warning
for each of them.

4.3 Parsing Syntatically Invalid Lua Files
Given that our semantics from Figure 2 propagates the inden-
tation warning set also in case of a failed matching, it allows
to report indentation warnings even in case of syntactically
invalid files. As a drawback, it is in theory possible to obtain
spurious indentation warnings originating from grammar
rules that backtracked, although in the case of our Lua parser
that never happened.

The capacity to report indentation warnings for syntacti-
cally invalid files may help to identify an unclosed block of
statements, as in the following example:

while x < 100 do
if y then

z = z + 42

x = x + 1

end

Here, the if statement is missing its end token. The parser
shipped with the reference Lua interpreter gives a poor error
diagnostic. It assumes that the x=x+1 assignment and the
end belong to the if statement, and it reports an error only
at the end of the file, when it can’t find another end to close
the while. Our PEG parser, on the other hand, indicates two
indentation warnings: a warning related to the assignment
x=x+1, as it is not more indented than the if-statement; a
warning related to the keyword end, which is not aligned
with the if-statement. As these warnings refer to specific
lines where there is an indentation issue, probably they will
help the developer to fix the error faster.
Moreover, keeping the set of indentation warnings may

be valuable in case we use some error recovery mechanism
for PEGs [6, 12].

5 Related Work
The main inspiration for our work were the indentation-
sensitive grammars of Adams. His firstmodel was for context-
free grammars [1] and is more suited for bottom-up-parsers.
Adams’ second model, developed together with Aǧacan, uses
parsing expression grammars [2] and is more suited for top-
down recursive descent parsing.
Code formatters also must specify valid indentation lay-

outs, however they do so as part of the pretty printers rather
than the parser. That is, in a typical code formatter the pro-
gram is first parsed, discarding any indentation from the
source file, and then pretty-printed back into well-formatted
code. Because the original layout information is discarded,
code formatters are usually geared for converting code to a
standard layout, rather than verifying the layout of existing
code. Because the parser and pretty printer are decoupled,
there is the advantage that any parser algorithm can be used,
but the disadvantage that the printer can only operate on
valid syntax trees and that changes in the grammar may also
require some rewriting in the corresponding code formatter.
Among the many algorithms used for pretty printing, we can
highlight the Coutaz’s box model [3] andWadler’s algebra of
documents [13], which build a set of layout constraints from
the AST and then use a constraint solver to decide where to
insert linebreaks. There are also pretty printer algorithms
that focus on speed, such as the linear time heuristics of
Oppen [9].
Parr and Vinju [11] propose a machine learning-based

approach to format programs. In their approach, we need
to provide a corpus 𝐷 of programs for a given language
𝐿, where such corpus should have a reasonable formatting
consistency. The training phase uses 𝐷 besides a lexer and a
parser for 𝐿 derived from a grammar𝐺 . Changing grammar
𝐺 does not affect much the resulting formatting style. As in
other code formatters approaches, it is not possible to rewrite
only specific parts of a file. In case a user wants to enforce
a different coding style, in our approach she needs to edit
the grammar and change some indentation relations, while
in case of Parr and Vinju it is necessary to get a different
corpus 𝐷 ′ with the desired sytle or to edit the files in corpus
𝐷 .

Nilsson-Nyman et al. [8] describe a parsing algorithm that
uses indentation to help identify matching pairs of delimiter
tokens and thus improve syntax error recovery. They specify
indentation by means of a separate bridge grammar, which
makes their technique compatible with an external parser
generator. However, because the bridge model is focused
on delimiter tokens, it cannot specify indentation layouts in
general.

6 Conclusion
In this work, we presented an extension of parsing expression
grammars that can specify indentation layouts for free-form

SBLP’25, September 22–26, 2025, Recife, PE S. Medeiros and H. Gualandi

programming languages. We presented several examples
describing how to use these grammars to model different
indentation styles.
We also evaluated the effectiveness of the compilation

warnings by specifying an indentation style for Lua and test-
ing how many indentation errors it identified in a widely-
used Lua codebase. Our analysis concluded that Adams’ in-
dentationmodel was capable of specifying useful indentation
rules, despite ignoring line numbers and caring only about
column numbers. However, there were several situations
where we had to work around this limitation by introducing
≥ or ⊛ relations, which weaken the grammar. For future
work, it might be worth investigating indentation models
that care about both line and column numbers, which would
allow different indentation behavior when two tokens are
on the same line.

ARTIFACT AVAILABILITY
This paper is accompanied by an artifact3 that contains the
indentation-sensitive Lua parser, as well as the Lua source
files from the awesome library, which were used as inputs to
our experiments.

ACKNOWLEDGMENTS
Hugo Gualandi received financial support from Conselho
Nacional de Desenvolvimento Científico e Tecnológico —
Brasil (CNPq) — project code 403601/2023-1.
This study was financed in part by the Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
– Finance Code 001.

REFERENCES
[1] Michael D. Adams. 2013. Principled parsing for indentation-sensitive

languages: revisiting landin’s offside rule. In Proceedings of the 40th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (Rome, Italy) (POPL ’13). Association for Computing
Machinery, New York, NY, USA, 511–522. doi:10.1145/2429069.2429129

[2] Michael D. Adams and Ömer S. Ağacan. 2014. Indentation-sensitive
parsing for Parsec. In Proceedings of the 2014 ACM SIGPLAN Sympo-
sium on Haskell (Gothenburg, Sweden) (Haskell ’14). Association for
Computing Machinery, New York, NY, USA, 121–132. doi:10.1145/
2633357.2633369

[3] Joëlle Coutaz. 1985. A layout abstraction for user-system interface.
SIGCHI Bull. 16, 3 (Jan. 1985), 18–24. doi:10.1145/1044201.1044202

[4] Bryan Ford. 2004. Parsing Expression Grammars: A Recognition-based
Syntactic Foundation. In Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Venice, Italy)
(POPL ’04). ACM, New York, NY, USA, 111–122.

[5] Roberto Ierusalimschy. 2016. Programming in lua (4 ed.). Lua.org.
[6] Sérgio Medeiros and Fabio Mascarenhas. 2018. Syntax error recovery

in parsing expression grammars. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing (Pau, France) (SAC ’18). Association
for Computing Machinery, New York, NY, USA, 1195–1202. doi:10.
1145/3167132.3167261

3https://dx.doi.org/10.5281/zenodo.16592251

[7] Richard J. Miara, Joyce A. Musselman, Juan A. Navarro, and Ben Shnei-
derman. 1983. Program indentation and comprehensibility. Commun.
ACM 26, 11 (Nov. 1983), 861–867. doi:10.1145/182.358437

[8] Emma Nilsson-Nyman, Torbjörn Ekman, and Görel Hedin. 2009. Prac-
tical Scope Recovery Using Bridge Parsing. In Software Language En-
gineering, Dragan Gašević, Ralf Lämmel, and Eric Van Wyk (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 95–113.

[9] Dereck C. Oppen. 1980. Prettyprinting. ACM Trans. Program. Lang.
Syst. 2, 4 (Oct. 1980), 465–483. doi:10.1145/357114.357115

[10] Jan Ouwens. 2024. Why are there no decent code formatters for
Java? https://jqno.nl/post/2024/08/24/why-are-there-no-decent-code-
formatters-for-java/. https://jqno.nl/post/2024/08/24/why-are-there-
no-decent-code-formatters-for-java/

[11] Terence Parr and Jurgen Vinju. 2016. Towards a universal code format-
ter through machine learning. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Software Language Engineering (Amster-
dam, Netherlands) (SLE 2016). Association for Computing Machinery,
New York, NY, USA, 137–151. doi:10.1145/2997364.2997383

[12] Sérgio Queiroz deMedeiros, Gilney de Azevedo Alvez Junior, and Fabio
Mascarenhas. 2020. Automatic syntax error reporting and recovery in
parsing expression grammars. Science of Computer Programming 187
(2020), 102373. doi:10.1016/j.scico.2019.102373

[13] Philip Wadler. 2003. A prettier printer. Palgrave Macmillan. 223–243
pages.

https://doi.org/10.1145/2429069.2429129
https://doi.org/10.1145/2633357.2633369
https://doi.org/10.1145/2633357.2633369
https://doi.org/10.1145/1044201.1044202
https://doi.org/10.1145/3167132.3167261
https://doi.org/10.1145/3167132.3167261
https://doi.org/10.1145/182.358437
https://doi.org/10.1145/357114.357115
https://jqno.nl/post/2024/08/24/why-are-there-no-decent-code-formatters-for-java/
https://jqno.nl/post/2024/08/24/why-are-there-no-decent-code-formatters-for-java/
https://doi.org/10.1145/2997364.2997383
https://doi.org/10.1016/j.scico.2019.102373

	ABSTRACT
	1 Introduction
	2 Describing Indentation Styles with PEGs
	3 Semantics of PEGs with Indentation Information
	3.1 Extending PEGs to Check Indentation
	3.2 Comparison with the Semanatics Proposed by Adams and Ağacan

	4 Evaluation
	4.1 A PEG for Lua
	4.2 Parsing Lua libraries
	4.3 Parsing Syntatically Invalid Lua Files

	5 Related Work
	6 Conclusion
	REFERENCES

